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1 A new diophantine equation

involving fifth powers

Ajai Choudhry and Oliver Couto

Abstract

In this paper we obtain a parametric solution of the hitherto un-
solved diophantine equation (x5

1
+ x

5
2
)(x5

3
+ x

5
4
) = (y5

1
+ y

5
2
)(y5

3
+ y

5
4
).

Further, we show, using elliptic curves, that there exist infinitely many
parametric solutions of the aforementioned diophantine equation, and
they can be effectively computed.
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1 Introduction

In this paper we obtain a parametric solution of the following diophantine
equation involving fifth powers:

(x5
1
+ x5

2
)(x5

3
+ x5

4
) = (y5

1
+ y5

2
)(y5

3
+ y5

4
). (1.1)

Eq. (1.1) has not been considered at all in the existing literature. We note
that when n is a positive integer < 5, parametric solutions of the diophantine
equation,

(xn
1
+ xn

2
)(xn

3
+ xn

4
) = (yn

1
+ yn

2
)(yn

3
+ yn

4
). (1.2)

are readily obtained since we know complete/ parametric solutions of the
diophantine equation xn

1
+ xn

2
= yn

1
+ yn

2
. In fact, it is not difficult to obtain

the complete solution in rational numbers of Eq. (1.2) when n = 2 or n = 3.
However, no nontrivial integer solutions of the equation x5

1
+x5

2
= y5

1
+y5

2
are

known, and there is no obvious way of obtaining nontrivial integer solutions
of Eq. (1.1).

We also note that parametric solutions of certain diophantine equations
involving fifth powers are already known. For instance, parametric solutions
of the diophantine equations,

s
∑

i=1

x5
i
=

s
∑

i=1

y5
i
, where s = 3 or s = 4, (1.3)

1

http://arxiv.org/abs/2104.09298v1


ax5
1
+ bx5

2
+ cx5

3
= ay5

1
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2
+ cy5

3
, (1.4)

where a, b, c are distinct nonzero integers such that a+ b+ c = 0, and

ax5
1
+ bx5

2
+ cx5

3
+ dx5

4
= ay5

1
+ by5

2
+ cy5

3
+ dy5

4
, (1.5)

where a, b, c, d are arbitrary nonzero integers, have been given by Bremner
[1], Moessner [7], Swinnerton-Dyer [9], Lander [6] and by Choudhry [2, 3, 4].
In all these cases, the degree of the diophantine equation is 5. In contrast,
however, Eq. (1.1) is of degree 10, and till now there are no instances of
integer solutions of such a diophantine equation being published.

2 The diophantine equation (1.1)

2.1 Preliminary remarks

There are certain integer solutions of Eq. (1.1) that satisfy Eq. (1.2) when
n is any arbitrary odd positive integer. All such solutions of Eq. (1.1) will
be considered as trivial solutions. An example of such a trivial solution is

x1 = a1u, x2 =a2u, x3 = a3v, x4 =a4v,

y1 = a1v, y2 =a2v, y3 = a3u, y4 =a4u,
(2.1)

where a1, a2, a3, a4, u and v are arbitrary parameters. Further trivial solutions
of (1.1) are obtained by equating both sides of (1.1) to 0. Solutions that are
not trivial will be considered as nontrivial solutions.

We now observe that if

(x1, x2, x3, x4, y1, y2, y3, y4) = (α1, α2, α3, α4, β1, β2, β3, β4) (2.2)

is any solution of the diophantine Eq. (1.1) and k1, k2 are any two arbitrary
nonzero integers, then

(x1, x2, x3, x4, y1, y2, y3, y4)

= (k1α1, k1α2, k2α3, k2α4, k2β1, k2β2, k1β3, k1β4) (2.3)

is also a solution of (1.1). It follows that integer solutions of Eq. (1.1) may be
obtained from any rational solution of (1.1) by suitably choosing the integers
k1 and k2.

We will now show that the diophantine Eq. (1.1) is equivalent to a dio-
phantine system consisting of the following three simultaneous diophantine
equations:

X5

1
+X5

2
+X5

3
+X5

4
= Y 5

1
+ Y 5

2
+ Y 5

3
+ Y 5

4
, (2.4)

X1X2 = Y1Y2, (2.5)

X3X4 = Y3Y4. (2.6)

2



If xi, yi, i = 1, . . . , 4, are any rational numbers satisfying Eq. (1.1), it is
readily seen that the rational numbers,

X1 = x1x3, X2 = x2x4, X3 = −y1y3, X4 = −y2y4,

Y1 = −x1x4, Y2 = −x2x3, Y3 = y1y4, Y4 = y2y3,
(2.7)

satisfy the three equations (2.4), (2.5) and (2.6). Conversely, if Xi, Yi, i =
1, . . . , 4, are any rational numbers satisfying the simultaneous equations
(2.4), (2.5) and (2.6), by solving Eqs. (2.7), we readily obtain rational num-
bers xi, yi, i = 1, . . . , 4, that satisfy Eq. (1.1). This establishes that the
diophantine Eq. (1.1) is equivalent to the diophantine system defined by
equations (2.4), (2.5) and (2.6).

Similarly, it is readily established that the diophantine system defined by
Eq. (1.1) and the equation,

(x1 + x2)(x3 + x4) = (y1 + y2)(y3 + y4), (2.8)

is equivalent to the diophantine system defined by Eqs. (2.4), (2.5) and (2.6)
and the following equation:

X1 +X2 +X3 +X4 = Y1 + Y2 + Y3 + Y4. (2.9)

2.2 A parametric solution

We will now obtain a parametric solution of Eq. (1.1) by solving the equiva-
lent diophantine system consisting of the simultaneous equations (2.4), (2.5)
and (2.6).

To solve Eqs. (2.4), (2.5) and (2.6), we write,

X1 +X2 = s1, X1X2 = s2, X3 +X4 = t1, X3X4 = t2,

Y1 + Y2 = S1, Y1Y2 = S2, Y3 + Y4 = T1, Y3Y4 = T2,
(2.10)

when Eq. (2.4) may be written as

s5
1
+ t5

1
− 5s3

1
s2 − 5t3

1
t2 + 5s1s

2

2
+ 5t1t

2

2

= S5

1
+ T 5

1
− 5S3

1
S2 − 5T 3

1
T2 + 5S1S

2

2
+ 5T1T

2

2
, (2.11)

while equations (2.5) and (2.6) simply reduce to

S2 = s2, T2 = t2. (2.12)

We will solve equations (2.11) and (2.12) by imposing the following aux-
iliary condition:

T1 = s1 + t1 − S1. (2.13)
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On eliminating S2, T1 and T2 from Eqs. (2.11), (2.12) and (2.13) we get,

s2
2
− t2

2
− (s2

1
+ s1S1 + S2

1
)s2 + (s2

1
− 2s1S1 + S2

1
+ 3s1t1 − 3t1S1 + 3t2

1
)t2

+ (s1 + t1)(S1 − t1)(s
2

1
− s1S1 + S2

1
+ s1t1 − t1S1 + t2

1
) (2.14)

On writing s2 = t2 + h, we readily obtain the following solution of Eq.
(2.14):

s2 =
[

h2 + {s2
1
+ (3t1 − 2S1)s1 + 3t2

1
− 3t1S1 + S2

1
}h

+(s1 + t1)(t1 − S1){s
2

1
+ (t1 − S1)s1 + t2

1
− t1S1 + S2

1
}
]

× {2h+ 3(s1 + t1)(t1 − S1)}
−1,

t2 =
[

−h2 + (s2
1
+ s1S1 + S2

1
)h + (s1 + t1)(t1 − S1){s

2

1
+ (t1 − S1)s1

+t2
1
− t1S1 + S2

1
}
]

{2h+ 3(s1 + t1)(t1 − S1)}
−1,

(2.15)

where h is an arbitrary parameter.
Since Xi, Yi, i = 1, . . . , 4, satisfy the relations (2.10), we will get rational

values of Xi, Yi if and only if s2
1
− 4s2, t

2

1
− 4t2, S

2

1
− 4S2 and T

2

1
− 4T2 are all

perfect squares, and we will now choose the parameters suitably to satisfy
these four conditions.

We now write
t1 = (S2

1
− h)/S1, (2.16)

and using the values of s2, t2 given by (2.15), we get

s2
1
− 4s2 = (S2

1
− S1s1 + h)(S1s1 − 2h)2

× {S2

1
(S2

1
+ 3S1s1 − 3h)}−1 (2.17)

t2
1
− 4t2 = (S2

1
− S1s1 + h)(S2

1
+ 2S1s1 − h)2

× {S2

1
(S2

1
+ 3S1s1 − 3h)}−1. (2.18)

It readily follows from (2.17) and (2.18) that both s2
1
− 4s2 and t2

1
− 4t2

will become perfect squares if we choose s1 such that (S2

1
− S1s1 + h)(S2

1
+

3S1s1 − 3h) is a perfect square, and accordingly we choose

s1 = {(3m2 + 1)h− (m2 − 1)S2

1
}/{(3m2 + 1)S1}, (2.19)

where m is an arbitrary rational parameter.
Next we will choose our parameters such that S2

1
−4S2 becomes a perfect

square. With the values of T1, s2, t2, t1 and s1 defined by (2.13), (2.15), (2.16)
and (2.19) respectively, we get,

S2

1
− 4S2 = {(m2 − 1)(3m2 + 1)2h2 + 2S2

1
(m4 − 1)(3m2 + 1)h

+ S4

1
m2(m2 + 3)2}/{(3m2 + 1)S1}

2. (2.20)
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Thus, S2

1
− 4S2 will become a perfect square if we choose h such that the

numerator on the right-hand side of (2.20) becomes a perfect square. This
numerator is a quadratic function of h and we readily find that it becomes a
perfect square when we choose

h = −2S2

1
u{(m+ 1)(m2 + 1)u−m(m2 + 3)}

×[(3m2 + 1){(m+ 1)u2 −m+ 1}]−1,
(2.21)

where u is an arbitrary rational parameter.
With the values of T1, s2, t2, t1, s1 and h defined by (2.13), (2.15), (2.16),

(2.19) and (2.21) respectively, we will finally choose a suitable value of u such
that T 2

1
− 4T2 also becomes a perfect square.

We observe that

T 2

1
− 4T2 = S2

1
φ(u)/[(3m2 + 1){(m+ 1)u2 −m+ 1}]2, (2.22)

where

φ(u) = (m6 − 26m4 − 31m2 − 8)(m+ 1)2u4 − 4m(m+ 1)(m2 + 3)

× (m4 − 6m2 − 3)u3 + 2(m− 1)(m+ 1)(3m6 + 28m4 + 31m2 + 2)u2

− 4m(m− 1)(m2 + 3)(m4 + 6m2 + 1)u+m2(m+ 1)2(m− 1)4. (2.23)

It follows from (2.22) that T 2

1
− 4T2 will become a perfect square if u is

so chosen that φ(u) is a perfect square. Now φ(u) is a quartic function of u
and, following a method described by Fermat (as quoted by Dickson [5, p.
639]), we obtain the following value of u such that φ(u) becomes a perfect
square:

u = m(m+ 1)2(m− 1)3(m2 + 3)(7m6 + 23m4 + 29m2 + 5)(2m14 − 41m12

− 328m10 − 967m8 − 1382m6 − 1047m4 − 308m2 − 25)−1. (2.24)

We have now chosen the parameters suitably so that s2
1
− 4s2, t

2

1
− 4t2,

S2

1
− 4S2 and T 2

1
− 4T2 are all perfect squares. Using the relations (2.10),

we now get rational values of Xi, Yi, i = 1, . . . , 4. We thus obtain a solution
of the simultaneous diophantine equations (2.4), (2.5) and (2.6) and, on
appropriate scaling, this solution may be written as follows:

X1 = (m− 1)(m+ 1)2f1(m)f2(−m),

X2 = −(m+ 1)(m− 1)2f1(−m)f2(m),

X3 = (m− 1)2f3(m)f4(m),

X4 = (m+ 1)2f3(−m)f4(−m),

Y1 = (m− 1)3f1(m)f2(m),

Y2 = −(m+ 1)3f1(−m)f2(−m),

Y3 = −(m− 1)(m+ 1)f3(m)f4(−m),

Y4 = −(m− 1)(m+ 1)f3(−m)f4(m),

(2.25)
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where the functions fi(m), i = 1, . . . , 4, are defined, in terms of an arbitrary
parameter m, as follows:

f1(m) = 5m14 + 7m13 + 71m12 + 30m11 + 345m10 + 17m9

+ 907m8 − 60m7 + 1311m6 − 71m5

+ 1109m4 + 62m3 + 323m2 + 15m+ 25,

f2(m) = m10 + 7m9 + 29m8 + 44m7 + 122m6 + 98m5

+ 202m4 + 92m3 + 133m2 + 15m+ 25,

f3(m) = 5m14 + 21m13 + 29m12 + 202m11 + 109m10

+ 755m9 + 173m8 + 1388m7 + 23m6 + 1259m5

− 177m4 + 426m3 − 137m2 + 45m− 25,

f4(m) = m11 + 6m10 + 8m9 + 57m8 + 46m7 + 184m6 + 92m5

+ 294m4 + 89m3 + 202m2 + 20m+ 25.

(2.26)

We note that since we had imposed the auxiliary condition (2.13), the
solution given by (2.25) also satisfies Eq. (2.9).

As we have already noted in Section 2.1, every solution of the diophantine
system defined by the equations equations (2.4), (2.5) and (2.6) readily yields
a solution of the diophantine Eq. (1.1). Accordingly, we obtain the following
solution of the diophantine Eq. (1.1):

x1 = (m− 1)f1(m), x2 = (m+ 1)f1(−m),

x3 = (m+ 1)2f2(−m), x4 = −(m− 1)2f2(m),

y1 = (m− 1)f3(m), y2 = (m+ 1)f3(−m),

y3 = −(m− 1)f4(m), y4 = −(m+ 1)f4(−m),

(2.27)

where the functions fi(m), i = 1, . . . , 4, are defined by (2.26) in terms of the
arbitrary parameter m.

Since the values of Xi, Yi, i = 1, . . . , 4, given by (2.25) satisfy the addi-
tional condition (2.9), it follows that the values of xi, yi, i = 1, . . . , 4, given
by (2.27) satisfy the additional condition (2.8).

We note that since any solution (2.2) of Eq. (1.1) yields another solution
(2.3), we may choose k1, k2 suitably to derive a solution of (1.1) satisfying
the additional condition x1 + x2 = y1 + y2. We thus obtain the following
solution of Eq. (1.1):

x1 = (m− 1)f1(m)f5(m), x2 = (m+ 1)f1(−m)f5(m),

x3 = (m+ 1)2f2(−m)f6(m), x4 = −(m− 1)2f2(m)f6(m),

y1 = (m− 1)f3(m)f6(m), y2 = (m+ 1)f3(−m)f6(m),

y3 = −(m− 1)f4(m)f5(m), y4 = −(m+ 1)f4(−m)f5(m),

(2.28)
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where the functions fi(m), i = 1, . . . , 4, are defined as before while

f5(m) = 5m8 − 12m6 − 90m4 − 124m2 − 35,

f6(m) = 5m8 + 44m6 + 94m4 + 108m2 + 5,
(2.29)

and m is an arbitrary parameter. The solution (2.28) satisfies the additional
conditions,

x1 + x2 = y1 + y2, (2.30)

x3 + x4 = y3 + y4, (2.31)

The condition (2.30) is satisfied, as already mentioned, by suitable choice of
k1, k2 while the condition (2.31) is automatically satisfied since the solution
(2.27) satisfies the condition (2.8).

A second solution of Eq. (1.1), derived similarly from the solution (2.27)
by first choosing k1, k2 such that x1 + x2 = y3 + y4 and then renaming the
variables y3, y4 as y1, y2 respectively, is as follows:

x1 = (m− 1)f1(m)f7(m), x2 = (m+ 1)f1(−m)f7(m),

x3 = (m+ 1)2f2(−m)f8(m), x4 = −(m− 1)2f2(m)f8(m),

y1 = −(m− 1)f4(m)f8(m), y2 = −(m+ 1)f4(−m)f8(m),

y3 = (m− 1)f3(m)f7(m), y4 = (m+ 1)f3(−m)f7(m),

(2.32)

where the functions fi(m), i = 1, . . . , 4, are defined as before while

f7(m) = −m2 − 1,

f8(m) = m6 + 4m4 + 9m2 + 2,
(2.33)

and, as before, m is an arbitrary parameter. This solution also satisfies the
additional conditions (2.30) and (2.31).

As a numerical example, when m = 3, the solution (2.27) yields the
following solution of Eqs. (1.1) and (2.8):

(x1, x2, x3, x4) = (35330, 25801, 2407,−1492),

(y1, y2, y3, y4) = (−19814, 32807, 1672, 2633).
(2.34)

As a second example, when m = 3, the solution (2.32) yields the following
solution of the simultaneous equations (1.1), (2.30) and (2.31):

(x1, x2, x3, x4) = (129005, 176650, 105932,−170897),

(y1, y2, y3, y4) = (186943, 118712,−164035, 99070).
(2.35)
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2.3 More parametric solutions

We will now describe a method of generating infinitely many parametric
solutions of the diophantine Eq. (1.1).

We will follow the method of solution described in Section 2.2 till we reach
the stage where we need to choose the parameter u such that the quartic
function φ(u), defined by (2.23), becomes a perfect square. We will now
show that there exist infinitely many values of u, given by rational functions
of m, that will make φ(u) a perfect square, and accordingly we can obtain
infinitely many parametric solutions of Eq. (1.1).

The requirement that φ(u) becomes a perfect square amounts to finding
rational points on the curve,

v2 = φ(u). (2.36)

Since φ(u) is defined by (2.23), Eq. (2.36) represents a quartic model of an
elliptic curve over the field Q(m), and by a birational transformation, the
quartic curve reduces to the Weierstrass form of the elliptic curve which is
as follows:

V 2 = U3 − 432(m− 1)(m+ 1)(325m10 + 955m8 + 1266m6 + 470m4

+ 57m2 − 1)U − 3456(5m4 + 2m2 + 1)(875m10 + 2885m8

+ 3822m6 + 1450m4 + 183m2 + 1)(m− 1)2(m+ 1)2. (2.37)

The aforementioned birational transformation is defined by

u = 6m(m− 1){(m+ 1)2(m− 1)2U − 420m10 − 4812m8

− 12648m6 − 14232m4 − 4404m2 − 348}/ψ(U, V,m),

v = m(m− 1){2(m+ 1)3(m− 1)3U3 − 36(m− 1)(m+ 1)

× (35m10 + 401m8 + 1054m6 + 1186m4 + 367m2 + 29)U2

− (m2 − 1)3V 2 − 864(3m2 + 1)(m2 + 3)(5m4 + 10m2 + 1)

× (7m6 + 23m4 + 29m2 + 5)V + 1728(m2 − 1)2

× (42875m20 + 497350m18 + 2290155m16 + 5717736m14

+ 8360982m12 + 7151748m10 + 3327950m8

+ 821800m6 + 97551m4 + 3494m2 − 89)/ψ2(U, V,m),

(2.38)

where

ψ(U, V,m) = 6(m2 + 3)(m4 + 6m2 + 1)U + (m2 − 1)V

− 72(m2 − 1)(m2 + 3)(35m8 + 86m6 + 108m4 + 26m2 + 1), (2.39)
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and by

U = {6(m− 1)(m+ 1)(3m6 + 28m4 + 31m2 + 2)u2

− 36m(m− 1)(m2 + 3)(m4 + 6m2 + 1)u

+ 18m(m+ 1)(m− 1)2v + 18m2(m+ 1)2(m− 1)4}/u2,

V = −108m{m(m2 + 3)(m4 − 6m2 − 3)(m− 1)2(m+ 1)2u3

− (3m6 + 28m4 + 31m2 + 2)(m+ 1)2(m− 1)3u2

+ (m− 1)(m2 + 3)(m4 + 6m2 + 1)uv + 3m(m+ 1)(m2 + 3)

× (m4 + 6m2 + 1)(m− 1)3u−m(m+ 1)2(m− 1)4v

−m2(m+ 1)3(m− 1)6}/u3.

(2.40)

We already know a point P on the quartic curve (2.36) whose abscissa
is given by (2.24). The point P ′ = (U0, V0) on the cubic curve (2.37), corre-
sponding to the point P on the quartic curve (2.36), is given by

U0 = 12(75m28 + 1010m26 + 11944m24 + 103096m22 + 585657m20

+ 2202226m18 + 5635746m16 + 10027936m14 + 12482909m12

+ 10709526m10 + 6063588m8 + 2067944m6 + 398591m4

+ 39750m2 + 1650)/(d2(m),

V0 = 216(125m42 + 2525m40 + 12350m38 − 138015m36 − 2822345m34

− 24701264m32 − 140086792m30 − 573149148m28 − 1776227438m26

− 4275792154m24 − 8087224924m22 − 12040781858m20

− 14031203010m18 − 12641030116m16 − 8645319848m14

− 4384538092m12 − 1605427583m10 − 411694779m8 − 71091250m6

− 7771895m4 − 478725m2 − 12500)/(d3(m)),
(2.41)

where

d(m) = (m2 + 3)(m− 1)(m+ 1)(7m6 + 23m4 + 29m2 + 5). (2.42)

When m = 2, the curve (2.37) reduces to

V 2 = U3 − 863202096U − 5268270761856, (2.43)

and a rational point on the curve (2.43) corresponding to the point P ′ =
(U0, V0) on the curve (2.37) is

(3346068693496/43020481, 5630105905921711808/282171334879).

Since this rational point on the elliptic curve (2.43) does not have integer
coordinates, it follows from the Nagell-Lutz theorem [8, p. 56] on elliptic
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curves that this is not a point of finite order. We can thus find infinitely
many rational points on the curve (2.43) using the group law.

Since in the special case m = 2, the point on the curve (2.43) correspond-
ing to the point P ′ is not of finite order, it follows that, for any arbitrary
rational value of m, the point P ′ on the curve (2.37) cannot be a point of
finite order. We can thus generate infinitely many rational points on the
curve (2.37) using the group law. Each of these rational points will yield a
corresponding rational point on the curve (2.36) and we thus get infinitely
many rational values of u, in terms of the parameter m, for which φ(u) be-
comes a perfect square, and hence we can obtain infinitely many parametric
solutions of the diophantine Eq. (1.1).

The point P ′ on the curve (2.37) corresponds to the point P on the
quartic curve (2.36) and naturally yields the solution (2.25) of (1.1) already
obtained in Section 2.2. The point 2P ′ is too cumbersome to write and yields
a parametric solution of Eq. (1.1) in terms of polynomials of degree 74. We
accordingly do not give this solution explicitly. However, the above analy-
sis, using elliptic curves, shows that there exist infinitely many parametric
solutions of the diophantine Eq. (1.1) and they can be effectively computed.

3 Some open problems

Any nontrivial solution of the diophantine equation (1.1) in which y4 = 0
immediately yields a solution in integers of the equation

(x5
1
+ x5

2
)(x5

3
+ x5

4
) = y5

1
+ y5

2
. (3.1)

The solutions of (1.1) obtained in Section 2.2 did not yield any such solution.
We, however, obtained four solutions of Eq. (3.1) by computer trials. The
sextuples (x1, x2, x3, x4, y1, y2) giving these four solutions are as follows:

(8,−1, 25, 21, 109, 213), (19, 12, 6, 4, 41, 119), (2,−1, 77, 83, 136, 174),

(67575, 56763, 21624,−2703, 1556222517, 796376781).
(3.2)

The first and last of these solutions satisfy the additional condition,

(x1 + x2)(x3 + x4) = y1 + y2.

It would of interest to determine whether there exist infinitely many nontriv-
ial solutions of the diophantine Eq. (3.1).

It would also be interesting to consider the diophantine Eq. (1.2) when
n > 5. While it is not inconceivable that there exist integer solutions of
Eq. (1.2) when n = 6, it is unlikely that that there are any solutions of the
diophantine equation (1.2) when n > 6.
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